LO-HVP contribution to the muon (g-2)from the Budapest-Marseille-Wuppertal collaboration

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

(BMWc, 1612.02364 [hep-lat] and in preparation)

HVP from LQCD: introduction

Consider in Euclidean spacetime (Blum '02)

$$\Pi_{\mu\nu}(Q) = \gamma \sqrt{q \choose \sqrt{q}} \gamma$$

$$= \int d^4x e^{iQ \cdot x} \langle J_{\mu}(x) J_{\nu}(0) \rangle$$

$$= \left(Q_{\mu} Q_{\nu} - \delta_{\mu\nu} Q^2 \right) \Pi(Q^2)$$

w/
$$J_{\mu}=rac{2}{3}ar{u}\gamma_{\mu}u-rac{1}{3}ar{d}\gamma_{\mu}d-rac{1}{3}ar{s}\gamma_{\mu}s+rac{2}{3}ar{c}\gamma_{\mu}c+\cdots$$

Then (Lautrup et al '69, Blum '02)

$$a_{\mu}^{\text{LO-HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} \frac{dQ^2}{m_{\mu}^2} \, w(Q^2/m_{\mu}^2) \hat{\Pi}(Q^2)$$

w/
$$\hat{\Pi}(Q^2) \equiv \left[\Pi(Q^2) - \Pi(0)\right] \& w(Q^2/m_\mu^2)$$
 known fn that makes integrand peak for $Q^2 \sim (m_\mu/2)^2$

⇒ determine precisely

$$\Pi_{\mu\nu}(Q)$$
 down to below $\sqrt{Q^2}\sim 50\,\mathrm{MeV}\qquad \longleftrightarrow \qquad \langle J_\mu(x)J_\nu(0)
angle \,\,\mathrm{up}$ to above $\sqrt{x^2}\sim 4\,\mathrm{fm}$

Low-Q² challenges in finite volume (FV)

A. In L^4 , $Q_\mu \Pi_{\mu\nu}(Q) = 0$ does not imply $\Pi_{\mu\nu}(Q=0) = 0$

$$\begin{split} \Pi_{\mu\nu}(Q=0) &= \int_{\Omega} d^4x \langle J_{\mu}(x) J_{\nu}(0) \rangle = \int_{\Omega} d^4x \partial_{\rho} [x_{\mu} \langle J_{\rho}(x) J_{\nu}(0) \rangle] \\ &\int_{\partial\Omega} d^3x_{\rho} [x_{\mu} \langle J_{\rho}(x) J_{\nu}(0) \rangle] \propto L^4 \exp{(-EL/2)} \end{split}$$

$$\Rightarrow$$
 as $Q_{\mu} \to 0$, $\Pi(Q^2) = \Pi_{\mu\nu}(Q)/(Q_{\mu}Q_{\nu} - Q^2\delta_{\mu\nu})$ receives $1/Q^2$ enhanced FV effect

- B. Particularly problematic, as need $\Pi(0)$ renormalization
- C. Need $\hat{\Pi}(Q^2)$ interpolation because in $T \times L^3$, w/ $T \ge L$ and periodic BCs, have $Q_{\min} = \frac{2\pi}{T} \sim 135 \, \text{MeV} > \frac{m_{\mu}}{2} \sim 50 \, \text{MeV}$ for $T \sim 9 \, \text{fm}$

Dealing with low-Q² problems: ad A, B & C

Compute on lattice

$$C(t) = \frac{1}{3} \sum_{i=1}^{3} \sum_{\vec{x}} \langle J_i(x) J_i(0) \rangle$$

Decompose

 $W/C^{l=1} = \frac{9}{10}C^{ud}$

$$C(t) = C^{ud}(t) + C^{s}(t) + C^{c}(t) + C^{disc}(t)$$
$$= C^{l=1}(t) + C^{l=0}(t)$$

• Define (Bernecker et al '11, BMWc '13, Lehner '14, ...) (ad A, B)

$$\hat{\Pi}^{f}(Q^{2}) \equiv \Pi^{f}(Q^{2}) - \Pi^{f}(\mathbf{0}) = \frac{1}{3} \sum_{i=1}^{3} \frac{\Pi^{f}_{ii}(0) - \Pi^{f}_{ii}(Q)}{Q^{2}} - \Pi^{f}(\mathbf{0}) = 2 \sum_{t=0}^{T/2} \operatorname{Re} \left[\frac{e^{iQt} - 1}{Q^{2}} + \frac{t^{2}}{2} \right] \operatorname{Re} C^{f}(t)$$

- Consider also for $Q \in \mathbb{R} \neq n \frac{2\pi}{T}, \ n \in \mathbb{Z}$ (RBC/UKQCD '15, ...) (ad C)
 - ightarrow gives $a_{\mu}^{ extsf{LO-HVP}}$ up to exponentially suppressed FV corrections

Simulation challenges

- D. $\pi\pi$ contribution very important \rightarrow must have physically light π
- E. Two contributions

where qd contributions are $SU(3)_f$ and Zweig suppressed but very challenging

- F. $\langle J_{\mu}^{ud}(x)J_{\nu}^{ud}(0)\rangle_{qc}$ & disc. have very poor signal at large $\sqrt{x^2}$ + need high-precision results \rightarrow very high statistics + tricks
- G. To control $\langle J_{\mu}(x)J_{\nu}(0)\rangle$ at $\sqrt{x^2}\gtrsim 3\,\mathrm{fm}$ \to w/ periodic BCs need L and/or $T\gtrsim 6\,\mathrm{fm}$
- H. Need controlled continuum limit
 - I. Include *c* quark for higher precision and good matching onto perturbation theory

Simulation details: ad D - I

15 high-statistics simulations w/ N_f =2+1+1 flavors of 4-stout staggered quarks:

- Bracketing physical m_{ud}, m_s, m_c
- 6 a's: $0.134 \rightarrow 0.064 \, \mathrm{fm}$
- $L = 6.1 \div 6.6 \,\text{fm}, T = 8.6 \div 11.3 \,\text{fm}$
- Conserved EM current
- Close to 9M / 39M conn./disc. measurements

β	a [fm]	$T \times L$	#conf-conn	#conf-disc
3.7000	0.134	64 × 48	1000	1000
3.7500	0.118	96×56	1500	1500
3.7753	0.111	84×56	1500	1500
3.8400	0.095	96×64	2500	1500
3.9200	0.078	128×80	3500	1000
4.0126	0.064	144 × 96	450	-

Light pions and statistics: ad D, E, F

 $\langle \pi(t)\pi(0)\rangle$ vs $\frac{81}{25}C^{ud}(t)$ as a function of t

 m_{ud} , m_s , m_c physical, $a \simeq 0.064$ fm, $L = 96a \simeq 6.1$ fm, $T = 144a \simeq 9.2$ fm

Good stats: 4×441 meas.

For $\delta_{\rm stat} a_{\mu \mu d}^{\rm LO-HVP} \sim 1\%$: 768 × 441 meas.

- \rightarrow noise/signal in $C^{ud/disc}(t)$ grows exponentially w/ t
- \rightarrow 768/64/4/6000 sources for ud/s/c/disc. w/ AMA (Blum et al '13)
- \rightarrow Use approximate SU(3)_f symmetry for noise cancellation in $C^{\text{disc}}(t)$ (Francis et al '14)

Statistics and upper/lower bounds on $C^{ud/disc}(t)$: ad F

Signal lost for $t \gtrsim 3 \, \mathrm{fm}$ for $C^{ud/\mathrm{disc}}(t)$

 \Rightarrow to control statistical error, consider strict upper and lower bounds for $t > t_c$:

Connected (I = 1)

$$0 \leq C^{ud}(t) \leq C^{ud}(t_c) \frac{\varphi(t)}{\varphi(t_c)}$$

Disconnected (I = 0, t_c large enough)

$$0 \leq -C^{ ext{disc}}(t) \leq rac{1}{10}C^{ud}(t_c)rac{arphi(t)}{arphi(t_c)}$$

with
$$\varphi(t) = \cosh [E_{2\pi}(T/2 - t)], E_{2\pi} \simeq 2\sqrt{M_{\pi}^2 + (2\pi/L)^2}$$

- \rightarrow for $t \geq t_c$ where bounds meet, replace $C^{ud/\text{disc}}(t)$ by average of bounds
- ightarrow obtain $a_{\mu,\,ud/\mathrm{disc}}^{\mathrm{LO-HVP}}(Q \leq Q_{\mathrm{max}})$ for each simulation & for $Q_{\mathrm{max}}^2 = 1, \cdots, 5$
- → vary t_c for systematic
- $\rightarrow a_{\mu, \, s/c}^{\text{LO-HVP}}(Q \leq Q_{\text{max}})$ obtained directly w/out bounds

Continuum limit of $a_{u,f}^{\text{LO-HVP}}(Q^2 \leq 5 \,\text{GeV}^2)$: ad H

- With 6 a's, have full control over continuum limit
- Get good $\chi^2/{\rm dof}$ w/ extrapolation linear in a^2 and interpolations, linear in M_π^2 and M_K^2
- Strong continuum extrapolation for $a_{\mu, ud/\text{disc}}^{\text{LO-HVP}}$ due to taste violations and for $a_{\mu, c}^{\text{LO-HVP}}$ due to large m_c
- Get continuum systematic from all results and by cutting results with a ≥ 0.134, 0.111, 0.095 fm
- Obtain other $a_{\mu,f}^{\text{LO-HVP}}(Q \leq Q_{\text{max}})$ and $\hat{\Pi}(Q_{\text{max}}^2)$, $Q_{\text{max}}^2 = 1, \cdots, 5 \, \text{GeV}^2$, in entirely analogous fashion

Hi Q² & matching challenges

- J. Need $\hat{\Pi}(\mathit{Q}^2)$ for $\mathit{Q}^2 \in [0,+\infty[$, but $\frac{\pi}{\mathit{a}} \sim 9.7\,\mathrm{GeV}$ for $\mathit{a} \sim 0.064\,\mathrm{fm}$
- I. Include c quark for higher precision and good matching onto perturbation theory

Matching to perturbation theory: ad I & J

Consider separation ($\ell = e, \mu, \tau$)

$$\begin{split} \textbf{a}_{\ell,\,f}^{\text{LO-HVP}} &= & \textbf{a}_{\ell,\,f}^{\text{LO-HVP}}(\textit{Q} \leq \textit{Q}_{\text{max}}) \\ &+ \gamma_{\ell}(\textit{Q}_{\text{max}}) \, \hat{\Pi}^{f}(\textit{Q}_{\text{max}}^{2}) \\ &+ \Delta^{\text{pert}} \textbf{a}_{\ell,\,f}^{\text{LO-HVP}}(\textit{Q} > \textit{Q}_{\text{max}}) \end{split}$$

- Compute $\Delta^{\rm pert}a_{\ell,\,f}^{\rm LO-HVP}(Q>Q_{\rm max})$ using $R_{\rm pert}(s)$ to $O(\alpha_s^4)$ from Harlander et al '03
- Not relevant for $\ell = e, \mu$ but important for τ
- Perfect matching of continuum lattice results for $Q_{\text{max}}^2 \geq 2 \, \text{GeV}^2$
 - \rightarrow control $\hat{\Pi}(Q^2)$ up to $Q^2 \rightarrow \infty$
- Get matching systematic from considering $Q_{max}^2 = 2$ and 5 GeV^2

Finite-volume challenges

K. Even in our large volumes w/ $L \gtrsim 6.1$ fm & $T \ge 8.7$ fm, finite-volume (FV) effects can be significant (Aubin et al '16)

Finite-volume effects from χ PT: ad K

- HVP contribution to a_μ comes from Euclidean momenta
 ⇒ FV effects are exponentially suppressed in L, T
- Because $L \gtrsim 6.1 \, \mathrm{fm}$ and $T \geq 8.7 \, \mathrm{fm}$ (i.e $LM_\pi \gtrsim 4.2$), expect them to be small
- However, work with L ~ fixed
 ⇒ FV effects cannot be estimated from simulations and need model
- Long-distance I=1 contribution dominated by 2π and I=0, by 3π \Rightarrow dominant FV effects in I=1 channel \rightarrow these could be well described by $\pi^+\pi^-$ loop (Aubin et al '16)
- Plot: $\pi^+\pi^-$ loop contribution to $a_{\mu,\ l=1}^{\text{LO-HVP}}(\infty) a_{\mu,\ l=1}^{\text{LO-HVP}}(L)$ computed numerically vs L w/ T=3L/2

- Actually obtain a^{I,O,HVP}_{μ, l=1} from C^{l=1}_l(t) in χPT exactly as in lattice computation w/ bounds, t_c procedure, interpolation in Q² etc.
- That procedure gives for L=6 fm, result very similar to above: $a_{\mu, l=1}^{\text{LO-HVP}}(\infty) a_{\mu, l=1}^{\text{LO-HVP}}(L) = 13.4 \times 10^{-10}$ $\Rightarrow +1.9\%$ correction to $a_{\mu}^{\text{LO-HVP}}(6 \text{ fm})$
- Assign 100% error to this correction

QED & isospin breaking challenges

- L. Our $N_f = 2 + 1 + 1$ calculation has $m_u = m_d$ and $\alpha = 0$
 - \Rightarrow missing effects compared to HVP from dispersion relations that are relevant at %-level precision

Isospin breaking effects: ad L

Get missing effects from phenomenology

Effect	corr. to $a_{\mu}^{\text{LO-HVP}} \times 10^{10}$
ρ — ω mix.	2.71
$\rho - \gamma$ mix.	-2.74
FSR	4.22
EM in M_{π} , M_{ρ} , Γ_{ρ}	-11.17
$\pi^0\gamma$	4.64(4)
$\eta\gamma$	0.65(1)
Total	-1.69(20)

- Thanks to F.Jegerlehner (& M. Benayoun) for correspondance and numbers
- Results based on Gounaris-Sakurai fit to e^+e^- , from $2M_{\pi}$ to 1 GeV
- EM modes from M. Benayoun et al '12
- F.J. estimates error to \sim 10% of total (i.e. 0.2×10^{-10}), we take 50% of largest contribution (i.e. 5.5×10^{-10} or 300% of total)
- Thus: $\Delta_{\text{IB}} a_{\mu}^{\text{LO-HVP}} = (-1.7 \pm 5.5) \times 10^{-10}$

Systematic errors and preliminary results

- Stat. error: jackknife
- $a \rightarrow 0$: from 4 (3) cuts on a for conn. (disc.)
- bounds: from $t_c = 3.100(2.600) \pm 0.134 \,\text{fm}$ vs $t_c = 2.966(2.466) \pm 0.134 \,\text{fm}$ for conn. (disc.)
- PT match: from $Q_{\text{max}}^2 = 2 \,\text{GeV}^2 \,\text{vs} \, Q_{\text{max}}^2 = 5 \,\text{GeV}^2$
- FV: 100% of χ PT FV correction
- IB: 50% of largest phenomenological IB correction

Contrib.	$a_{\mu}^{ ext{LO-HVP}} imes 10^{10}$
<i>I</i> = 1	585(8)(6)(7)
I = 0	120(4)(3)
Total	704(9)(7)(13)(6)

Error on total:

- Stat. = 1.2%
- LQCD syst. = 0.9%
- FV = 1.9%
- IB = 0.8%
- Total = 2.6%

Compare w/ upper bound (Bell et al '69) using Π_1 from 1612.02364 [hep-lat] = 792(24)

Comparison

- "No New Physics" = $(720 \pm 7) \times 10^{-10}$ obtained from Davier '16
- BMWc '17 consistent w/ "No new physics" & pheno.
- Total uncertainty of 2.6% is $\sim (6 \div 7)x$ pheno. error
- BMWc '17 is larger than other $N_f = 2 + 1 + 1$ results \rightarrow difference w/ HPQCD '16/ETM '13 is $\sim 1.6/0.9\sigma$

More detailed comparison

- BMWc '17 c contribution is slightly smaller than other
 N_f = 2 + 1 + 1 results
- BMWc '17 is only calculation performed directly at physical quark masses w/ 6 a's to fully control continuum extrapolation
- $\begin{array}{l} \bullet \quad \text{BMWc '17 } \delta a_{\mu, \; \text{disc}}^{\text{LO-HVP}} = 1.5 \times 10^{-10} \\ \rightarrow \text{ contributes only 0.2\% to error on } a_{\mu}^{\text{LO-HVP}} \end{array}$

Conclusions and outlook

- Calculation of all relevant contributions to $a_{\mu}^{\text{LO-HVP}}$ directly at physical m_{ud} (also have slope and curvature of $\hat{\Pi}(Q^2)$ at $Q^2=0$, see 1612.02364)
- Fully controlled continuum limit and matching to perturbation theory
- Only model/pheno. assumptions for small FV, QED and $m_u \neq m_d$ corrections
- Consistent with "no new physics" and dispersive methods, but error \sim (6÷7)× larger; some tension with HPQCD 16 on $a_{\mu,\,ud}^{\text{LO-HVP}}$
- Total error is 2.6%, dominated by poorly controlled FV effects
- Need ~ 0.2% to match upcoming experiments!
 - \Rightarrow increase statistics by $\times 50 \div 100$
 - ⇒ control FV effects directly w/ simulations
 - \Rightarrow compute QED and $m_d \neq m_u$ correction to relevant observables

Now the real fun begins!